Dr. Christopher Jung
Dr. Christopher Jung
Wissenschaftlicher Mitarbeiter (Post-doc)
Hebelstr. 27, Hinterhaus
79085 Freiburg
Raum 01 004
christopher.jung@mail.unr.uni-freiburg.de | |
Tel | +49 761 203 69243 |
ORCiD | 0000-0001-5952-2610 |
Biographie
Christopher Jung studierte von 2009 bis 2012 „B.Sc. Umweltnaturwissenschaften“ an der Albert-Ludwigs-Universität Freiburg. Von 2012-2015 absolvierte er das Studium „M.Sc. Umweltwissenschaften“ in Freiburg. Seit 2015 ist er wissenschaftlicher Mitarbeiter an der Professur für Umweltmeteorologie. Die Promotion schloss er im Februar 2018 ab.
Forschungsschwerpunkt
Christopher Jungs Forschungsschwerpunkt liegt in der kleinskaligen Modellierung statistischer Eigenschaften der bodennahen Strömung. Die wichtigsten Ziele seiner Forschung sind die Optimierung der Windenergienutzung und die Minderung des Sturmschadensrisikos in Wäldern.
Laufende und abgeschlossene Forschungsprojekte
- MiStriKli - MInimierung des STurmschadensRIsikos in Wäldern vor dem Hintergrund des KLImawandels
- ECOSENSE (SFB)
Publikationen
Originalarbeiten in wissenschaftlichen Fachzeitschriften
- Jung C, 2024: Recent Development and Future Perspective of Wind Power Generation. Energies, 17: 5391.
- Jung C, Schindler D, 2024: Global trends of wind direction-dependent wind resource. Energy, 304: 132235.
- Jung C, Schindler D, 2024: Introducing a new hazard and exposure atlas for European winter storms. Science of The Total Environment, 929: 172566.
- Jung C, Sander L, Schindler D, 2024: Future global offshore wind energy under climate change and advanced wind turbine technology. Energy Conversion and Management, 321: 119075.
- Sander L, Jung C, Schindler D, 2024: Global review on environmental impacts of onshore wind energy in the field of tension between human societies and natural systems. Energies, 17: 3098.
- Sander L, Schindler D, Jung C, 2024: Application of satellite data for estimating rooftop solar photovoltaics potential. Remote Sensing, 16: 2205.
- Wehrle J, Jung C, Giometto M, Christen A, Schindler D, 2024: Introducing new morphometric parameters to improve urban canopy air flow modeling: A CFD to Machine-Learning study in real urban environments. Urban Climate, 58: 102173.
- Jung C, Schindler D, 2023: The properties of the global offshore wind turbine fleet. Renewable & Sustainable Energy Reviews, 186: 113667.
- Jung C, Schindler D, 2023: Reasons for the Recent Onshore Wind Capacity Factor Increase. Energies, 16: 5390.
- Jung C, Schindler D, 2023: Efficiency and effectiveness of global onshore wind energy utilization. Energy Conversion and Management, 280: 166788.
- Jung C, Schindler D, 2023: Comprehensive validation of 68 wind speed models highlights the benefits of ensemble approaches. Energy Conversion and Management, 286: 117012.
- Jung C, Schindler D, 2023: Introducing a new wind speed complementarity model. Energy, 265: 126284.
- Miller TW, Stangler DF, Larysch E, Honer H, Puhlmann H, Schindler D, Jung C, Seifert T, Rigling A, Kahle H-P, 2023: Later growth onsets or reduced growth rates: what characterises legacy effects at the tree-ring level in conifers after the severe 2018 drought? Science of the Total Environment, 854: 158703.
- Sander L, Jung C, Schindler D, 2023: New concept of renewable energy priority zones for efficient onshore wind and solar expansion. Energy Conversion and Management, 294: 117575
- Zeppenfeld T, Jung C, Schindler D, Sennhenn-Reulen H, Ipsen MJ, Schmidt M, 2023: Winter storm risk assessment in forests with high resolution gust speed data. European Journal of Forest Research, 142: 1045–1058.
- Garamszegi B, Jung C, Schindler D, 2022: Multispectral spaceborne proxies of predisposing forest structure-attributes to storm disturbance – a case study from Germany. Forests, 13: 2114.
- Jung C, Schindler D, 2022: Projections of energy yield- and complementarity-driven wind energy expansion scenarios in the European Union. Energy Conversion and Management, 269: 116160.
- Jung C, Schindler D, 2022: A review of recent studies on wind resource projections under climate change. Renewable & Sustainable Energy Reviews, 165: 112596.
- Jung C, Schindler D, 2022: Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. Nature Energy, https://doi.org/10.1038/s41560-022-01056-z.
- Jung C, Schindler D, 2022: On the influence of wind speed model resolution on the global technical wind energy potential. Renewable & Sustainable Energy Reviews, 156: 112001.
- Jung C, Demant L, Meyer P, Schindler D, 2022: Highly resolved modeling of extreme wind speed in North America and Europe. Atmospheric Science Letters, e1082.
- Schindler D, Sander L, Jung C, 2022: Importance of renewable resource variability for electricity mix transformation: a case study from Germany based on electricity market data. Journal of Cleaner Production, 379: 134728.
- Behr HD, Jung C, Trentmann J, Schindler D, 2021: Using satellite data for assessing spatiotemporal variability and complementarity of solar resources – a case study from Germany. Meteorologische Zeitschrift, 30: 515-532.
- Grau L, Jung C, Schindler D, 2021: Sounding out the repowering potential of wind energy – a scenario-based assessment from Germany. Journal of Cleaner Production, 293: 126094.
- Jung C, Schindler D, 2021: Does the winter storm-related wind gust intensity in Germany increase under warming climate? – A high-resolution assessment. Weather and Climate Extremes, 33: 100360.
- Jung C, Schindler D, 2021: Distance to power grids and consideration criteria reduce global wind energy potential the most. Journal of Cleaner Production, 317: 128472.
- Jung C, Schindler D, 2021: The role of the power law exponent in wind energy assessment – A global analysis. International Journal of Energy Research, 1-13.
- Jung C, Schindler D, 2021: A global wind farm potential index to increase energy yields and accessibility. Energy, 231: 120923.
- Jung C, Schindler D, 2021: Modeling wind turbine-related greenhouse gas payback times in Europe at high spatial resolution. Energy Conversion and Management, 243: 114334.
- Sander L, Jung C, Schindler D, 2021: Greenhouse gas savings potential under repowering of onshore wind turbines and climate change: a case study from Germany. Wind, 1: 1-19.
- Schindler D, Schmidt-Rohr S, Jung C, 2021: On the spatiotemporal complementarity of the European onshore wind resource. Energy Conversion and Management, 237: 114098.
- Unnewehr JF, Jalbout E, Jung C, Schindler D, Weidlich A, 2021: Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation - A German case study. Renewable Energy, 180: 245-257.
- Jung C, Schindler D, 2020: The annual cycle and intra-annual variability of the global wind power distribution estimated by the system of wind speed distributions. Sustainable Energy Technologies and Assessments, 42: 100852.
- Jung C, Schindler D, 2020: Integration of small-scale surface properties in a new high resolution global wind speed model. Energy Conversion and Management, 210: 112733.
- Jung C, Schindler D, 2020: Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale. Energy Conversion and Management, 225: 113425.
- Schindler D, Jung C, 2020: Winterstürme über Deutschlands Wäldern 1981-2018. Allgemeine Forst- und Jagdzeitung, 190: 205-214.
- Schindler D, Behr HD, Jung C, 2020: On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Conversion and Management, 218: 113016.
- Albrecht A, Jung C, Schindler D, 2019: Improving empirical storm damage models by coupling with high-resolution gust speed data. Agricultural and Forest Meteorology, 268: 23-31.
- Jung C, Schindler D, 2019: Precipitation Atlas for Germany (GePrA). Atmosphere, 10: 737.
- Jung C, Schindler D, 2019: Wind speed distribution selection - a review of recent development and progress. Renewable & Sustainable Energy Reviews, 114: 109290.
- Jung C, Schindler D, 2019: Changing wind speed distributions under future global climate. Energy Conversion and Management, 198: 111841.
- Jung C, Schindler D, 2019: The role of air density in wind energy assessment - A case study from Germany. Energy, 171: 385-392.
- Jung C, Schindler D, 2019: Historical Winter Storm Atlas for Germany (GeWiSA). Atmosphere, 10: 387.
- Jung C, Taubert D, Schindler D, 2019: The temporal variability of global wind energy - Long-term trends and inter-annual variability. Energy Conversion and Management, 188: 462-472.
- Jung C, Schindler D, 2018: Sensitivity analysis of the system of wind speed distributions. Energy Conversion and Management, 177:376-384.
- Jung C, Schindler D, 2018: On the inter-annual variability of wind energy generation - a case study from Germany. Applied Energy, 230: 845-854.
- Jung C, Schindler D, Grau L, 2018: Achieving Germany's wind energy expansion target with an improved wind turbine siting approach. Energy Conversion and Management, 173: 383-398.
- Jung C, Schindler D, 2018: 3D statistical mapping of Germany’s wind resource using WSWS. Energy Conversion and Management, 159: 96-108.
- Jung C, Schindler D, Laible J, 2018: National and global wind resource assessment under six wind turbine installation scenarios. Energy Conversion and Management, 156: 403-415.
- Jung C, Nagel L, Schindler D, Grau L, 2018: Fossil fuel reduction potential in Germany's transport sector by wind-to-hydrogen. International Journal of Hydrogen Energy, 43: 23132-23138.
- Schindler D, Jung C, 2018: Copula-based estimation of directional wind energy yield: A case study from Germany. Energy Conversion and Management, 169: 359-370.
- Grau L, Jung C, Schindler D, 2017: On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany. Sustainability, 9: 1169.
- Jung C, Schindler D, 2017: Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource. Energy Conversion and Management, 149: 303-317.
- Jung C, Schindler D, 2017: Global comparison of the goodness-of-fit of wind speed distributions. Energy Conversion and Management, 133: 216-234.
- Jung C, Schindler D, Buchholz A, Laible J, 2017: Global gust climate evaluation and its influence on wind turbines. Energies,10: 1474.
- Jung C, Schindler D, Laible J, Buchholz A, 2017: Introducing a system of wind speed distributions for modeling properties of wind speed regimes around the world. Energy Conversion and Management, 144: 181-192.
- Jung C, 2016: High spatial resolution simulation of annual wind yield using near-surface wind speed time series. Energies, 9 (5): 344.
- Jung C, Schindler D, 2016: Modelling monthly near-surface maximum daily gust speed distributions in Southwest Germany. International Journal of Climatology, 36: 4058-4070.
- Jung C, Schindler D, Albrecht AT, Buchholz A., 2016: The Role of Highly-Resolved Gust Speed in Simulations of Storm Damage in Forests at the Landscape Scale: A Case Study from Southwest Germany. Atmosphere, 7: 7.
- Schindler D, Jung C, Buchholz, A, 2016: Using highly resolved maximum gust speed as predictor for forest storm damage caused by the high-impact winter storm Lothar in Southwest Germany. Atmospheric Science Letters, 17: 462-469.
- Jung C, Schindler D, 2015: Statistical modeling of near-surface wind speed: A case study from Baden-Wuerttemberg (Southwest Germany). Austin Journal of Earth Science, 2015; 2 (1) (online): 1006.